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ANALYSIS OF &PAR CANTILEVER WINGS WITH SPECIAL REFERENCE TO

TORSION AND LOAD TRANSFERENCE

By PAULKUHN

SUMMARY

Thti paper ti unlh the ana.?ysi.soj %-par cantilever
wings in tomi.on, taking cognizance of the fact thd the
8par8are not independent, bui are intemonnectedby rib8
and other 8truetwrd members. T/b principles of inter-
action are bri@y exphzined, 8h0wing that the ?nutua?
reliaf action occurring depends on the “pure tontional
&ti@98° of the wing cro88 88Cii07L.Vari0u8 practiea.1
methods of anulysi.sare outlined. The “IMedrielWxm
Kdrnuin equution.s”are shownto require the leastamount
of labor. Tlwae equahin+ were originul.ly cla-ivedfor
wing8 thut owe their torsional 8ti57w88to th individual
torsional 8ti#ne88e8of the 8par8;it .ti 8h5wn,however,that
the eq@tin.8 apply .aikoto W7@J8in which the t~tid
8ti$ne8stk due to drag bracing-wires or stre88edikin—
awangedin twopluna.

Numerical examples by tb severalmdwok of analysis
are given and tlw agreemeni betweenth ca.kdation and
experiment is shown. In the we of a tmuxwoL~ar
structuretb rd8 arepractied?y eguivderd to theredt.s
oj standardM-work calmdaiiorwwhich tred the struc-
twre as a pi~”oinied space framework, M they ean be
obtahwdwith 80 much less tabor that the andysi8 may be
madea9a routine dz3ignproceduxe.

INTRODUCI’ION

The forces acting on a cantilever wing produce, in
genera~bending and torsion of the wing frame, the term
“wing frame” being used here to denote the combina-
tion of spars and such structural elements as ribs and
drag wires which connect the spars and contribute to
the structural strength.

The present investigation deals with the tranderence
of forces between the spars due to the connecting ele-
ments and is concerned with methods of analysis suit-
able for practical use. The work w-asocmiinedto the
problem of cantilever 2-spar wings chiefly because the
interaction effect is relatively more important for this
type of wing than for any other type. A survey of the
literature showed that the first article discussing inter-
action eflect was published in Germany in 1918 and has
been available in an English translation (reference 1)
since 1923. I?or wing frames without drag bracing a

ve~ convenient method has been developed by Fried-
richs and von IWrmfm (referenoe 2). As the l?ried-
ricbs-von IWmhn formulas have apparently never been
published in English, their derivation is given. The
method is then extended tc cover other cases of 2-spar
construction, and the available experimental evidence
is analyzed by this method. For comparison, a con-
ventional method of analysis is used in some cases, and
it is shown that the labor of ccmputationby thismethod
may be reduced without appreciable error by assuming
that only one or two ribs are active in transferring the
load. The simplified conventional method gives good
approximations for the bending moments in the spars.

WING FRAMES WITH DRAG BRACING IN A SINGLE
PLANE AND WITH PARALLEL SPARS

WINGFRAME?WITHINDEPENDENTSPARS

Let us ccnsider briefly the action of a 2-spar w@
frame Conforming to the usual assumption that the
ribs are simply supported at the spars, so that there is
no interaction between the spars. The load P (@g. 1)
is distributed between the two spars according to the
position of its point of application. In general, the
deflections of th~ spars resulting frcm the components
Pr and P~ will diiler, resukiqg in a twist of the wing.
There is, however, one point of the section at which P
may be applied without causing a twist; this point is
called the “elastic center” of the section, and its
position is given approximately by the ccndition

~ zbO=EJ~ zEFIF (1)

where E is the modulus of elasticity, I the moment of
inertia, and the subscripts 1? and F refer to rear and
front, respectively.

The locus of the elastic canters of a wing is oalled the
“elastic axis” or the “axis of twist.” This axis may
usually be approximated by a straight line; a large
deviation from the straight line may occur, but for the
present purpose the iniluence of such a deviation is
small if it occurs only close to the root and will be
neglected.

For purposes of analysis it is convenient tc replace
a load P in an arbitrary position by a direct bending
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load P at the elastic center and a couple Pe, where e
is the distance between the po-int of application of P
and the elastic center. The total stresses will be
obtained by superpos@j the stresses due to the bend-
ing load and the stresses due to the torque; only the
analysis of the stresses due to torque will be dealt with
in the following investigation.

In figure 2 is shown a 2-spar system with a pure
torque acting on it, exerted by equal and op$osite

P= Pp.

l-’+ — bO— $

uniform running loads on the two spars. The torque
T= wLb is taken up entirely by bending of the spars,
and if the cross sections of the spara are constant, the
angle of twist at the tip in radians is

~= WL4
8bAa

where & is defined by –l-=~+& AF=EIF,~ A=
and AR=EIR.

(2)

Fmvm 2—Def-tIon of 2+1.w~ without inteiactiou

WING FIMB= WITE ONE ME

I?rinciples of interaction.-The elastic axis of a wing
frame can be computed for most ty-pes of 2-spar con-
struction; consequently, as indicated in the paragraphs
on wings with independent spars, it will always be
assumed that the elastic axis has been found and that
the load has been resolved into a bending load and a
torque. The loading condition inves&aated will be a
pure torque; i.e., equal and opposite loads on front and
rear spars at any station. The general case of arbi-
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trary loadings on front and rear spars will, however, be
briefly discussed in a later section.

A wing with @dependent spars having been con-
sidered, the next step will be to consider a wing frame
consisting of two spars connected by a rib at the tip.
It maybe well to emphasize here that throughout this
report the term “rib” is used to denote a rib specially
designed for the purpose of transferring loads from one
spar to another. It will be assumed that such ribs are

u. -—__ --------w
[p
I
I

fiomE 3—Ddormation of wing frame with spm of Intldte tomional~lhln~,

rigid against bending in their own plane, but have
negligible torsional stiffnessagainst warping out of their
plane. Checks” of existing designs have shown that
this -assumption can be fulfilled with the practical
accuracy required.

l?igures 3 and 4 show a wing frame consisting of a
deep, stiff front spar and a shallow, flexible rear spar.
The load may consist of two equal and opposite forces

‘rp
I
I

Ram 4.-Defomatlon of wing frame with sparsof mo torslond sll17nea.

P applied at the tip, but only one of them haa been
indicated since this is sticient to explain the action.

Figure 3 shows a state of deformation that might be
predicted after very superficial inspection. The front
spar has been forced by the tip rib to deflect the same
amount as the rear spar. For any number of ribs,
the condition that the front-spar deflection equals the
rear-spar deflection at each rib would furnish sufficient
equations to solve the indeterminate structure. This
consideration was the basis for proposed analytical
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(reference 3) and graphical (reference 4) methods of
investigating wing frames

A little reflection, however, shows that this assumpt-
ion is unconservative. The assumed resultant action
would occur only if the torsional stiflness of the spars
were infinite. Actually, a number of spar sections in
common use tend to approach the opposite extreme of
negligible torsional stiffness. Figure 4 shows the re-
sultant deformation of such a wing frame. Wahout
torsional 8ti$ne88, th.sjront spar simply twists without
offering any aid to thaloadedrear spar.

Calculation of relief moment.—l?igure 5 shows a
wing frame consisting of two parallel spars connected
by a rib at the tip. For convenience, the cross sections
are at iirst assumed constant.

The load is a torque, exerted by equal and opposite
uniform running loads on each spar. The structure is
made determinate by cutting the rib and introducing
as unknowns the shear force X and the bending mo-
ment Yin the rib.

The external loads cause vertical displacements of
the two edges of the cut in the rib, and the two un-
knowns are calculated horn the two conditions of con-
tinuity: The relative angular displacement of the two
edges must be zero, and the relative vertical displace-
ment of the two edges of the cut must be zero. The
first condition is fuliilled if the cut is made at such a
location that

a b–a
Fp=x

(3)

where ~F = QJFis the torsiomd stit?ness of the flont
spar. (See appendix A.) If the cut ia made at this
point, the bending moment Y is zero, leaving the shear
force X as the only unknown, to be calculated by using
the second condition of continuity.

The relative vertical displacement at the cut due to
the external forces is

(4)

where ~ has the same meaning as in equation (2).
The relative vertical displacement due to X consists
of two parts, a direct bending deflection of the spars
and a vertical displacement of the cut due to twist of
the spars. X3 XJJ2

Yx=~o+~ (5)

where BO=BF+BR. (Formulas for calculating B are
given in appendix A.) Equation (5) holds whether or
not the front and rear spars are alike.

The second condition .of continuity requires that
y,=llx, which givm

3wL

‘=++%) (6)

The bending moment in the spar without interaction
is equal at any point to the externally applied moment

M,= ~. With the rib intact, the bending moment

Mat any point x is obtained by subtracting from M,
bhe relief moment m=xX due to the action of the
~hearingforce X in the rib.

Although all the foregoing calculations were made
mder the assumption of constant-spar cross sections,
bhemethods used can be extended without difficulty to
the case of variable cross sections and any arbitmry
.oading condition. The only difference is that some
~dditional labor will be required to calculate the
Inflections by integration; ordinarily, this will be an
~pprosimate numerical integration or perhaps a
~aphicid one.

Estimate of torsional stiffness required.-Formula
(6) shows that the relief moment depends on the

b2A Since the bending stiffness and sparqu~tiw p~o”

l-–+=-i
FIGURE&-D@ram for adyds of WiJWfr2me with 0110rib.

spacing may be considered as tied by other design
considerations, it is evident that an increase of relief
action can be achieved only by increasing the torsional
stiffnessesB of the spars.

b order to gain a quantitative idea of the torsional
stillness required for a desired amount of interaction,
formula (6) may be used to establish a relief coefficient,
giving the ratio of the relief moment at the wing root
to the external bending moment:

(7)

For uniform loading and constant-spar sections,
this becomes

3

CR= 4(I +3g*)
(7a)

Using an average value of -$=; and replacing AO

b ~ A.F, Bo by 2BF (i.e., assuming front and rear
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spars to be equal) reduces (7a) to

(7b)

Assuming a reduction in bending moment of 5 percent
as the minimum worth considering, and adding to this
another 5 percent for inefficiency of joints and deflec-
tion of ribs, we obtain OE=O.10 as the minimum
requirement. Equation (7b) then gives a maxhnum
petilble value of AR/B~=217. A comparison of
the A/B values for the rectangydm beam and the
routed bemn of appendix A shows that the rectangular
beam is within this limit, but that the routed beam
has insufficient torsional stiihss to justify calculations
for transference action.

Formula (7a) shows that the relief action disappears
if the torsional sti.flness11 approaches zero; if B ap-
proaches i.niinity, the relief coefficient approaches the
value %, corresponding to a beam built in at one end
and supported at the other.

‘ixl !
FIGURE6.-Diegram for adysfs of W@ frame with two ribs

Influence of looation of rib along span.-The rib
need not necessarily be located at the tip, but may be
nn~here along the span. It is diflicult to make any
precise sihutementsas to the best location for maxi-
mum effectiveness, since too many frtctom enter into
the problem. In the first place, there is no simple
criterion for effectiveness. The reduction in bending
moment at the root was used in a preceding paragraph,
but the reduction in moment all along the span should
be considered to obtain a complete picture. Further-
more, the force in the rib depends on the relative values
of the bending and torsional stiffnesses of front and
rear spars, and these are capable of so many variations
that a detailed discussion appears useless.

Generally spea~m, it may be said that the maxi-
mum effects are secured by hav@ the rib close to the
tip of the wing. The extreme tip is the best place
for the rib if the spars have constant sections and
have vanish@ torsional stiffness. If the spars taper,
or if they have a very high torsional stitlness, the beat
position for the rib is farther inboard. For normal

amounts of taper and torsional stillness, the best loca-
tion is usually in the outer third of the semispan.

Two practical considerations are in favor of placing
the rib farther out than the best position for theoretical
maximum relief moment in the spar. The farther
inboard the rib is located the higher the force in it,
unless the torsional stifllmss is very low, so that the
rib must be made very heavy to secure the necessary
stiffness and strength. Furthermore, the relative
motion of the two spars becomes rapidly less as the
wing root is approached; consequently, the importance
of the unavoidable play in the fittings increases
rapidly and may vitiate any conclusions draw-non the
basis of calculations assuming perfect joints. If
desired, the effects of imperfect joints nnd of deforma-
tion of the rib may be taken into account when
making the calculations but it is obvious that no
general rules for locating the rib can be made, since
allowances for such deviations from the fundamental
assumptions depend entirely on the type of design.

V?RiGFRAM~WITHMORETHANONE RIB

Standard methods of analysis.-The application of
a conventional method of analysis will be briefly
sketched for the case of a frame with two ribs (fig. 6).
The tit step is to calculate the locations of the cuts
in the ribs by equation .(3). If they do not fall in the
same. chordwise location, the distances may be aver-
aged, giving the points closer to the spanwise center
line of the frame more weight. An approsimntion
that is always conservative for the spars is to make
the cuts at the center line of the frame. The error
committed by so doing is appreciable only if the spars
have very low- torsional stiffness, and if there is a
large difference between the bending stithsms of the

front and the rear spar. For $=; and IR~~IF, the

error in X is 11 percent for the box spar of nppendix A
and 21 percent for the rectangular spar.

Cut~~ the ribs introduces one unknown for each
rib and one condition: The relative vertical displace-
ment at each cut due to the external loads must
equal the vertical displacement due to the unknowns
Xl and Xz or

IA.=lil,lxl+lila (8a)

Y2’=Y2JX+Y2J2 (8b)

where yl, 2 is the deflection at cut 1, due to a unit
force acting at 2. As in the case of the single rib, all
coefficients connected with the unknowns contain two
terms,one due to bend@ and one due to torsion. The
~oefficients can be computed for any given numer-
ical case and substituted in the equations (8n) and
(8b). The solution of these two simultaneous equa-
tions offers no diflicnlties
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For designe~ who prefer least-work methods, Mr.
C, P. Burgess of the Bureau of Aeronautics, IVav-y
Department, has proposed the following method of
solution:

Consider as statically determinate structures the two
spins, endowed with bending stillness only, and as
redundancies the torsional stiffnesses BOin each bay.
Denote by Rx the fraction of the total torque in bay n
taken up by torsional stresses; by M, the bending
moments in the spars with the ribs cut; by ill= the
bending moments in the spars due to a pair of torque
moments, equal in magnitude to the width of the bay,
applied through the drag bracing at the outboard and
the inboard end of bay n; and by 1 the length of the
bay.

The folIowing system of equations may now be
written:

(9n)

When these equations have been solved for RI and
RZ the iinal bending moments are obtained from

M= M,+R,IM,+.RJLI, (9C)

The physical concept behind this method is the same
as for the fit method outlined; the labor of compu-
tation is considerably lessened, however, through the
introduction of equal and opposite couples at the end
of each bay in place of the single couples XZI used in
the first method.

If there are more than three or four ribs, the pro-
cedure becomes very laborious both in the computa-
tion of the coefficients and the solution of the system
of equations. Thalau (reference 5) has nevertheless
made several series of such calculations and, although
the results are only of general interest on account of
the assumptions made (constant and equal-spar sec-
tions), some interesting conclusions can be drawn
from these calculations. The most important con-
clusion is that the tip rib gives practically all of the
relieving effect, and that additional ribs in the span
have little effect, no matter how many ribs are added
or where they are located. Concordant with this
fact, the forces in these additional ribs are usually
smaller than the force in the tip rib, except for spars
with unusually large torsional stifhsses.

If the cross sections of the spars vary along the
span, the situation is similar to that of a wing frame
with a single rib. In general, the most advantageous
locations for two ribs would be at the tip and at ap-
proximately two-thirds of the semispan from the root.

In view of the results of Thalau’s calculations on
spars with constant sections, it seems safe to assume
that good approximations for the bending moments in
the spars and the force in the tip rib will be obtained
for any case of more than two ribs by assuming that
only the tip rib and a rib at two-thirds of the span
are operative. This statement will be corroborated
later on by comparison with other methods of caJcnla-
tion.

The approximate method of calculation has the
drawback of not giving the forces in the intermediate
ribs. It has already been pointed out, however, that
for the inboard portion of the wing, calculations may
be largely illusory due to deformations and the effects
of play in fittings; consequently, judicious estimates
based on the force in the tip rib are probably of as
much practical value as more exact calculations.

It maybe mentioned that attempts have been made
to solve the problem of the multirib wing frame from
the opposite point of view, i.e., by assuming that there
are infinitely many ribs and setting up the diilerential
equations for two spars connected by a continuous
elastic coupling. Reference 6 gives such a solution
and a very complete discussion of the fundamautal
case of constant sections with uniform load. For
variable sections and loads, succwsive appro.simation
methods have been proposed (see bibliography in
reference 6) for integrating the differential equations,
but they are in too mathematical a form to appeal
to the strew-analyst. As a matter of some interest,
the formulas for the angle of twist at the tip of a
wing with constant-section spars will be given here.

(a) For a torsional moment T consisting of two
equal and opposite forces applied at the tip

(
tanh XL0=% 1– ~

)
(lorL)

(b) For a torsional moment produced by equal and
opposite uniform running loads w along the spars

0=~#(1 +; x’L’–A.L tmh ~L–sech kL)(lOb)

where

A’=-f&’

The Friedrichs-von K6rmtin equations.-The con-
ventional methods of analysis become very cumber-
some for practical use for more than three or four
unlmowns if no sweeping simplifying assumptions are
made. Two main defects of these methods are ap-
parent: VThen the coefficients are calculated, it is
necessary to consider the properties of a large part of
the wing frame and to make lengthy numerical inte-
grations; furthermore, unless certain combinations of
the forces X 1,X3, etc., are used as unknowns, the re-
sulting system of equations involves each unknown
in each equation, thus producing a system which is
difficult to solve by ordinary means.
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Ikiedrichs and von Khrmfm have shown a solution
of the difficulty (reference 2). They point out that
each spar may be considered as a continuous beam
over a number of elastically yielding supports, the
ribs, which in turn derive their load-bearing ability
from the other spar. Convenient methods for dealing
with continuous beams me well known, one of them
being the method of “3-moment equations”; the
Friedrichs-von Khrahn equations are essentially a
set of 3-moment equations applied to a wing frame.
The derivation of these equations will now be given.

Figure 7 shows part of a wing frame consisting of
two parallel spars connected by a number of ribs. The
ribs are numbered, bea@nningwith zero at the wing tip,
and each bay carrks the same number as the rib at its
inboard end. In order to investigate the intermll
forces in the spars, the spars have been cut just out-

board of the nth rib. The forces acting on the face
of each cut are a shearing force S’, a bending moment
M, and a torsional moment 2’. The external load
consists of a running load w on each spar, which need
not be uniform along the sp~ but is subjected only
to the condition that at any point wF=wR. The
opposite sense of forces and bending moments in the
two spars is taken care of by the sign convention
adopted. Since wF=w& the external shears and bend-
ing moments (without interaction) at any point are
also equal in the front and rem spars, so that no sub-
scripts denoting front or rear are needed, but only
subscripts denoting the spanwise location, and we
may write

s. ()‘wdz=s%= +&
a

(FK-1)

Of the three significant equations of static equilibrium,
two state that the internal shearsand bending moments

me also equrd in the front and rear spars

S’F=&=S, M,=M~=M (FK-2)

The third equation of equilibrium gives

TF+TB+b(S–St)=O (FK-3)

Now, remembering that S=d$ and defining the

relief moment m by

M=M.+m (FK-4)

equation (I?K-3) may be transformed to

(FK-5)

(From ilLF=M,R and MF=MR it follows tlmt
mF=mR.)
The re]ief moments mF and m~ are due to the con-
centrated forms exerted on the spars by the ribs; there-
fore, they are linearly distributed between stntions, and

()dm m=—ma..l
z.= L

which may be substituted into the lmt equntion to
give

T.+ TE4-bm+.o (FK-6)

The torque (TF+ T.) remains constant for the length
of one bay. Since the spars are assumed to be rigidly
connected at each station by the rib, and consequently
the twist of the front spar between stations n— 1 and n
must equal the twist of the rear spar between these
stations, the relation between the torques TFrmd TRis
given by

TF B,—.—
T. B, (FK-7)

where B is again the torsionrd stiffness of the spar
section. If B varies between stations, the nverage
defined by

(FK-s)

must be used.

Equations (FK-6) and (FK-7) combine to give

Since all static equations hnve been satisfied, the
principle of least ~ork can now be npplied to” find
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the relief moments. The internal work done in the
structure is

In this expression, each htegral extends over one
buy, while the summation signs extend over the whole
wing. Using equations (FK4) and (FK-9), lkf and
T can be expressed in terms of known quantities
and of the relief moments. V/hen these substitutions
have been made in equation (FK-1O), the partial
derivative of the work can be taken with respect
t07n1, ~,m3 . . . m., furnkhing one equation for
each unknown relief moment by equating each
derivative to zero.

On account of the linear distribution of m between
bays, the general expression for m at any point within
bay n is

m.=nh-,~+nh~ (TK-11)

where for convenience the origin of the z axis is taken
at the lower-numbered end of the bay under consider-
ation.

It will be seen that when the derivative is taken
with respect to any moment w, the summation
will extend over only two bays: Bay n from station
n-1 to n and bay n+ 1 from station n to n+ 1. The
remdt is

where & is defined as previously by &=&+$R

and BO=BP+BR. In each term, 1 is the length of
the bay over which the integral extends.

Introducing the following abbreviations

Jn M*z
P*= —-dx._,& 1

JnfMe(1—2)~q.=.-,ZT
‘*=S:-1%+6%)=

-&*=J“(1–z)’cb(b’) I.-mzr+~.*

I
@K-13)

jhe final system of equations reads

ml(T,+t,) + m~, - — (p,+q,)

m182+w(rs+G) +ws= —(p2+45)

w3+~(r8+t~) +m~~,=— (P3+Q4)

. . . . . . . . . . . .

. . . . . . . . . . . .

m.–18.+n#’n= —p.

51

@K-14) -

I’he computation of the coefficients p, q, r, s, and t
m.n be simplified by various assumptions. Whether
m not these assumptions are admissible in any given
mse must be left to the judgment of the designer.

If five or more ribs are considered to be acting, it
will be sufficiently accurate, in general, to use the
mlues of A and B for the middle of each bay as the
~verage values and to wmune that the sections are
xmstant for the length of one bay. With this assump-
tion

‘==(&)=+(&).
(I?K-15)

‘n=(&)s-(&)n

t==r=

Assuming constant A and a linear variation of M for
each bay gives

() M,r,+2M,~p.= & *(
@’K-16)

L%)~ (2M,A+Mem)~$b= 6 .

A somewhat better approximation for p and q is pos-
sibly obtained by assuming that M/A varies linemly
(it is often practically constant), which gives

(I?K-17)

If the assumption of constant AOin each bay does not
appear to be suiliciently accurate, and linear variation
from AO=_lto Aoais assumed, the termsin r,s, tbecome,
dropping the subscript zero

8.=K+iYr:A’-$~-,’
(3?K-18)
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A 10b’
–A+%., 10g.~ – ~ =

1
‘“= (A.–A.-J3 [

–;A=~+zA~n_l –;A,_~

10AL+x.=‘A”‘OgeA,-,

Attention should perhaps be called to the fact that
the sign convention adopted for the front spar is
opposite to the standard.

The general case of arbitraryloadings.-The separa-
tion of the load into a bending load and a torque load
usually results in a reduction of the numerical work
required, because the cilcrdation of the interaction
effect is made only once for the case of pure torque.
Various flight conditions can then be investigated
simply by superposing the effects of bending and torque
loads in the proper proportions.

The direct analysis of any case o~ arbitrary loadings
on front and rear spars, for example, the low angle-of-
attack condition, may be made by any of the methods
discussed. It is obvious that such a procedure of

I Alldimensicws in centimeters

~“o 4 Cross sectfon
of durahmin

Plon view or w@ frome Sm=
Rmm S.-DewIts of dumhunln wing aarra

inves~~ating each flight condition sepaately would be
lengthy because each time the calculation of the inter-
action effect would bo included. This method, how-
ever, does not require the knowledge of the el=tic
axis; it may therefore be preferable in casas where
there is some doubt about the accuracy with which
the elastic ati may be fonnd-

The method of procedure to be used in the general
case requires no comments if standard methods are
used. If the Friedrichs-von Ktirm$in equations me
used, the following substitutions must be made in
(FK-13):

provided that the sign convention of iignre 7 is retained.
If the usual sign convention is adopted (up loads posi-
tive for both spars), the sign of the front spar term in
p and q must be reversed.

NUMRRICAL EXAMPLE FOR USE OF FORMULAS, WITH
COMPARISONS BETWEBN THEORY AND EXPERIMENT

In order to show the application of the formulas de-
veloped, a metal wing frame will be calculated in detail.
The dimensions of the frame and the test results are
taken from reference 7. Figge S shows the dimensions
of the w-@ frame and of the spar section (front and
rear spars are identical). Since the absolute dimen-
sions of the wing are such that it cannot be considered
as a practical case, the metric units have not been
converted into English units.

The properties of spars are computed as follows:

1=17.1 cm4
A,=EI.=EI~= 11.2X 10°kg Cmz(from bending

te9t on spar)

AO=5.6X 10° kg C&
J~= (formula (T-3), appendix A)= 14.3 cm’
(3=285,000 kg cm’ (from tests on round tubes)

B.= QJP= QJ.=4.07X 10° kg cmz
BO= (4.07+4.07 )X10e=8.14X 10° kg cmz

The loading oondition chosen here for comparison
with test redts is a 40-kilogTam load applied at the
tip of the front spar. Since the two spars are alike,
the elastic axis of the wing frame is at the center lirm,
and the load may be resolved into a bending load of
40 kilograms at the centerline and a torque of 40X50=
2,OOOcm-kg. The vertical deflection at the tip due to
the bending load is

20X2503
‘1=3 X11.2 X100=g”30 cm

independent of the numbers of ribs acting. The deflec-
tions due to the torque will be computed for two cases:
all ribs acting, and tip rib only acting.

Since the case of 10 ribs acting is practically a close
approach to an infinite number of ribs acting, formula
(lOa) may be used here. The parameter h is found
from

N=&=5.68x1;o::;oo2 =l.453 x 10-’

k=l.206X10-?; ti=3.015; tanh XL= O.995

Y,=OX:=Z.05CIIl

For the case of the tip rib only acting, a formula similar
tc formula (6) can be derived

D

where P is defined by P= T/b=20 kg
Substituting the numetical values gives

X= O.752p=15.04 kg
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Consequently, the tip deflection due to torque is for
this case

4.96X2503
‘3=3xlL2x10e =2.31 cm

The total deflections of the front-spar tip are therefore
Y= Y1+Y9=11.35 cm for ~ ~bs act~g
y=yl+ys=ll.61 cm for tip rib only acting

The experimental values are 11.13 and 11.33 respec-
tively.

In order to simplify the calculation of the momenti
by means of the Friedrichs-von J&din formulas, it
will be resumed that only five ribs me workhg.

11=L=4=1,=16=50 cm

Using equation (I?K-15):

rl=rq=ra= r4=rb=tl=k=h=t4=tb
50 1002

‘3 X5.6 X10*+ 50X8.14X10E
= (3.0+24.6)X10+=27.6X10-’

81‘sj=~s=&=s~= (1.5—24.6) X10-6= —23.1x 10-6

For this calculation let ~=1, on each spar tip (T=1OO),
which @V8d

M%=O M,1==50 M%=lOO

M%=150 M.4=200 M,,=250 cm-kg

Using equation (ILK-16):

60
%(O+2X60)=149.0 X1 O-6‘l=0x5.6X10

50
“=6x5 .6x10e (50+2x100)=372.5x104

50
~3=6x6.6xlo6 (100+ 2x160)=596.0x10-d

50
~4=6x5.6xlof (150+2X200)=819.5x10+

~6=6x5::x~o,(200 +2x250) =1,043 .0xl@-d

@=l.4wxlo-qo+50)= 74.5xlo-6
qz=l.490X10-o(2 X50+100)=298X10-o
g~=l.490X10-d(2 X100+150)=521.5X10-o
q4=l.490X10-o(2 X160+ 200)= 745Xlo-e
q6=l.490X 10-6(2X200+250) =968.5x 10-0

With these values of p, g, r, 8, and t the following
system of equations is obtained

m,x55.2—~x23.1= —447
—mlx23.1+mgX55.2 -maX23.1=-894
—wX23.1+wX55.2—m4 X23.1 =—1,341
—% X23.1+mdX65.2—mbX23 .1= —1,788
—m,X23.l+mbX27.6 = – 1,043

l?hese equations may be solved by expressing m, as
~function of ms in the last equation, then successively
xrpressing %, m.2,and ml as functions of m6; two
?quations for ml will be obtained which can be used
;Ocalculate m,. Substitution of m~in the previously
]btnined expressions will then give ml, ml, ma,and m,.

In certain cases, the method of solution indicated
will give the result as the diilerence of numbm too
.arge to be handled even on a calculating machine.
In such cases the solution can be effected by a process
of succewive approximations. Assume reasonable
values for the relief moments m along the span and,
3tarting with the last equation, solve each equation
in turn for the unknown with the largest coefficient.
Repeat the process with the corrected values for the
unknowns until two successive values are in sufficiently
close agreement. This method of solving the system
Df equations is very rapid if the coefficients (rs+~l)
are 5 to 10 times larger than the coefficient 8X)a con-
dition applying particularly to stressed-skin wings.

Table I gives the results of the calculations for the
present example in the following sequence:

(1) The external bending moment (for a tip load of
~=1) on each spar.

(2) The relief moments m, to m,.
(3) The resulting bending moments (sum of (1) and

(2) by equdtion (FK-4)), equal and opposite for front
and rear spar.

(4) The differences between successive values of m.
(5) The total torque carried by torsional shear of

the spars in each bay (equation (FK-6))

T1=Tp+Tn=#’(%-%-,)
n

(6) The bendiqg shear in the spars for each section,
~=divf—“ in this case, since the moment distribution

dz ‘
M –M.-,along the span is linear, between stations LS=~-

(7) The torque carried in each bay by the bending
sheax in the spars Tz=i%.

As a check, it will be noted that TI+T2=T..

TABLE I.—INTERNAL FORCES AND MOMENTS IN
WING FRAME OF REFERENCE 7

I@ading: lkdomattip dtintm,lhup attipofm~]

Station

r

Ci%g cn% Cl& ~“m”~ (n&g ksg C&g
— — — — — — —

o 0 0 0 ..........-.G:i-.-k-tii.---------
-------.--------.........---------

1 m -44. s 5.7 _.!!?_ -------- . ..--... _:!l
-------- -------- ---------- -------- 4&4

2 m -87.7 123 . . . . . . . ..- _ffl.!.- J?l. ..?.:. -
------- - -------- ------- . . . --------

3 IM –lm 7 243 -J!-!- ..?:-!.. _:!l _!l!_
-------- -------- ---------- -------- !23.5 .59.0 .410 410

4 m _~~ 44.8 ---------- -. E-6-- .-:%.. --..-..-
-------- -------- ---------- -------- 125

6 m –167.7 RL3 ------------------ -------- m..

The results are plotted in figure 9. The figure shows
the exterd bending momenti M,, the bending
moments M with the tip rib acting, the bending
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moments M with five ribs acting, and the variation of
T1 and T9 along the span. It is apparent that near
the tip the largest part of the external torque is carried
by the toreional stresses in the spars but that, as the
root is approached, the paxt of the torque carried by
bending of the spare rapidly increases and is the major
part near the root.

The values of M given in table I may be used to
calculate the bending deflection at the tip due to the
torque, it being remembered that the actual torque is
exerted by l’=+ 20 kg on the spar tips. ~unmrical
integration of these values gave y=2.03 cm, as com-
pared with y= 2.05 cm obtained horn formula (8) and
y=2.31 cm obtained by assuming that only the tip
rib is acting. It will be seen that the percentage
ditTerencein tip deflection is very much less than the

300 120

-20 I I I I

100

80

?);p ‘Sfafion– h-of

~GUEE 9.—T0KIue and banding momants in dmalmnin whg frame.

differences in bending moments along the span
the two cases of tip rib acting and all ribs acting,

fOr
the

latter differences b&g more &an 100 percent in ~laces
as shown in iigure 9.- This fact me&s that or&aryJ
deflection measurements are of little value for tests
of this nature; in order to obtain the accuracy required,
it will be necessary either to measure the slope of the
elastic line or to make strain measurements.

A number of strain measurements was made on the
frame under consideration (referance 7), and figure 10
shows the results for the loading case computed in the
preceding example. The figure gives the bending
moments due to the direct bending load of 40 kilo-
grams applied at the elastic center of the wing, the
total computed moment (using the values of M of
table I), and the bending moments computed from
the strein mewmrements. The agreement is good,
the only possible objection to the test procedure being
that equal and opposite loads should have been applied
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to both spars so as to eliminate the direct bending
load and thus considerably increase the accuracy of
check@ the amount of relief action, which influences
only the part between the two curves of bending
moments.

A wing frame consisting of two wooden box spars
connected by 10 ribs was tested by von I?hkla (refer-
ence 8). As a result of this test and a test on a full-
sized metal wing, von I?hkla concluded that the inter-
action can be calculated to an accuracy of better than
5 percent. This conclusion, of course, involves the
presumption that the properties of the spars are known
with the same accuracy, a presumption hmdly war-
ranted in any given case for wood construction, since
the material properties E and Q are variable in much
wider limits.

/qocu
-700

—!- Bend.ng momenf due fo’beno’-
1

hg load of elasiiccen fer.

4000’600
— 6en@mom’f tofu~compufed.

o Bending moment from shin —
m easuremen fs.

“500
!

1 I 1

$6,000
1 +00$

*
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,/

</’

=200 /-’
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Tip Sfafion I&of

FIGURE 10.-Computed and mmsmwl bandingmoments In dnroladn fig frame.

lVING FRAMES TVITH DRAG BRACING IN TJVO

PLANES AND PARALLEL SPARS

PRINCIPLE OF CALCULATION

The Friedrichs-von KArmhn formulas were derived
for a wing frame in which the drag bracing is arranged
in a single plane, so that pure torsional sti.flnew (i.e.,
torsional stithw-s outside of that obtained by bending
of the spars) is furnished only by the individual
torsional stillnesses of the spars. How-ever, it is
quite well appreciated that double drag bracing, be it
wire or stressedskin, furnishes a much higher torsional
stiffness than can normally be obtained from the spars
alone, provided that the two planes of drag bracing
are well separated.

From the derivation of the I?riedrichs-von Kfmn6n
~ormulas, it is clear that they still hold if the pure
torsional stiffness of a wing section is furnished by
other means than by having sparspossessingindividual
torsional stiffness. The necessa~ torsional stiffness
may be achieved by connecting the spars in the top
and bottom planes by drag-wire bracing, thus closing
the space between the spars to form a torsion box; or
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the wing may be covered with a stressed skin, convert-
ing the whole wing section into a torsionally stiff
shell. The wing must then be considered to consist
of two distinct elements: One element stressed in
bending, the spars; and one element stressed in torsion,
the torsion tube. The spar webs thus may perform a
dual function: They may at the same time be part
of the bending element and also part of the torsion
tube. The shearing stress in the webs is obtained by
superposing the shear due to torsion of the tomion
tube (uniformly distributed over the depth of the -web)
and the shear due to bending of the spars (parabolically
distributed over the depth unless diagonal-tension
fields form).

The pure torsional sti.fhmssof torsion tubes is csJcu-
Iatid by formula (T–3), appendix A. in the caae of
drag-wire bracing, it is expedient to calculate m effec-
tive skin thickness of an imaginary skin such that the
shear deformation of this skin is equal to the shw
deformation of a panel due to the elongation of the
winm.

h— ‘------l r’?

FmJEE 11.-.Sheardeflection of bum @ and solid shwt.

l?or the wire-braced panel we have (fig. 11)

where A is the cross-sectiond-me~ of.the. diagonal.
For the solid sheet

Equating the deflection and solving for the equiv~
lent thickness

t’=z%%=;+’pcostp (11)

For the panel of figure 12, consisting of steel spars
with steel-wire bracing, the torsional stiffness becomes
(assuming E the same for tubes and wires)

~J_4A’Q_ 4h’b’Q

J$ :+%
Now

t’=?i%~ “ ‘s’ R

i2=~f) sin e cos=n

b=l tan ~,;h=l’ tan (q

71OM3-364

J?herefore,by substitution

(12)

LA.cos3 ,1+4 cod q]

L’he computation of h need not be very exact, as n
wle, since tl is the decisive factor, the area of the tubes
n the spar web being much larger thsa that of the
wires. Average values may be used for p, and & if
;hese values change in the bay.

A word of caution appeaxs very necessary regarding
ihe value of Q to be used for stressed-skin wings,
particularly plywood-covered wings. The shearing
modulus has not been used very extensively in engi-
neering in the past; the results of only a few tests on
iifferent materials are scattered through the literature,
md they have often been obtained by very question-
~ble methods. Only remhk obtained from torsion
tQ& should be used, if obtainable. AppendiY B

T
b

v

--y

?L
J_

I

FIGURE 12-D&ram of ~ wimswM.

gives a collection of such data as were available to the
writer.

Attention must be called to the fact that the -C
covering may buckle at very low loads to form dia.gonal-
tension fields. When n sheet of thickness t has
buckled, it has a reduced effective thickness of

tE
“=2G

(13)

or for duralumin and steel, t.=; t. This relationship

is based on the elementary theory of diagonal-tension
fields, and it involves the assumption thnt the flanges
are Mnitely rigid and that the tension folds are in-
clined at 45° agybt the beam axis. Formulas for
calculating the buck@ stress may be found in good
textbooks on strengg of materials. In calculations of
this nature, the edges should be ~sumed to be simply
suppori%d, because the elastic restraint thnt actually
efitsi is canceled by the detrimental effect of initial
buckles.
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NUMERICAL EXAMPLE OF WING FRAME WITH DOUBLE DRAG
WIRE BRACING. INCLUDING COMPARISON BETWEEN THEORY
AND EXPERIMENT

A very suitable example of this type of structure
is a W@ tie that was built for testing purposes at
Wright Field. The dimensions of this frame, test
results, and results of least-work calculations treating
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the whole ‘frame as- a pin-jointed space structure are
given in reference 9. For convenience, the dimensions
are given in figure 13 of the present report and the
results of one set of least-work calculations are giwm
in figure 14, which is taken from figure 30 of reference 9.

.TABLE 11.-INTERNAL FORCES AND MOMENTS IN ~NG FRAME OF REFERENCE 9

bad@ lW wmb don at tiP of tie tit wc l@JWWU5SUP at tiP of tie roaram]

I I

-gg~ ; ,;:; :p$ .-$j-~y~.~$ ~:’~+ ,&. ‘+? ‘+$$?.yf. ‘+ * ,

65$ ----------------X& _;!!:;__:.-.. -.;-. --:-;-----;.;...--.;-:..-?-!.- -H. .............i..;..
------1---- --------z .553 2,210

.___:_ M&l;l;-k:!..l s+~;--
-y-- -.;-;- -:;:-- ;-:. -..;:-.-..-;:-..-..;-;...._.;. .-.:;.. ..... .......;:..-----.-

]S,910,----------------—-------—.—.-.—-- .-— . ........................ --------.........................................
I I

The bending and torsional stiffnesseswere calculated as follows:

Moments of Inertia

Front spar: I=2X0.1656X4.62= 6.70in?; E=29 X 10°; EI=194.3x10E lbin.’ ‘

Rear Spin: I=2X0.1656X3’=2.98 in?; EI=86.3X10° lb.in.’

-&&+& 106=0.01674X10-6 &=59.8X10° lbin?

TORSIONALSTIFFNESSOF Box SECTION

Equivalent thickn=es of sohd sheet (formula (11))

Drag truss: tl=
3OX1O6
~XO.0141 X& XO.641 x 0.7692=4,450 ~

Front-spar web: G= 2g~10dX0.0786X~ X0.707 X0.707’= 89,500 $

Rear-spar web: G= 2g~00X0.0786X$X0 .555X0.8322=97,300 ~

4X2252B= QJ=U~:= 60 . 9 . 6 =14.87X10E lb-in.z

It will be noted that the shear deflections of the
spars were negleoted in computing the bending stiil-
ness, resulting in overestimating the stifbesses, con-
sequently the loads calculated for the spars. In this
particular case, however, the error is not much larger
than the possible uncertainties; furthermore, the test
loads are introduced as vertical loads at the spars,
and the transference of the loads from the spars to
the drag trusses is not perfect as assumed by theory,
so that the approximate bending stifbmsses are sti-
ciently accurate for the purpose of calculating the
interaction effect.

With the calculated values of AO and B. the relief
moments are calculated in the same manner as
for the duralumin wing frame (fig. 8). Column 1 of
table 11 gives the external bending moment for rLdown
load ~=100 pounds on the front spar rmd an equal
up load on the rear spar. Column 2 gives the crdcu-
lated relief moments; column 3 gives the actual bending
moment in the spars, obtained as the sum of columns
1 and 2. Column 4 gives the difference between relief
moments at suecesive stations; this difference multi-
plied by bll gives the torque TI carried by the tmsion
box, which is listed in column 5; column 6 gives the
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sheax force per inch of perimeter in the torsion box,

obtained fromjd~=~ where A=area of torsion tube.

The total shearing force for one drag truss, column 7,
is multiplied by 1.56 to give the force in the drag
wire, column 8. Column 9 gives the increments in
bending moments, which are used to compute the
bending shears listed in column 10. Column 11 gives
the totionrd shear in the front spar, obtained by
multiplying the shear force per inch perimetar (column
6) by the depth of the spar. Column 12 gives the
total shear in the front spar, obtained by adding the
VdUCS of columns 10 and 11. fidy, cohmm 13
gives the forces in the’ diagonals of the spar web,
calculated from the sheam of column 12. Columns
14, 16, and 16 give the shear calculations for the rear
spar.

The forces in the spar flanges are obtained by super-
posing the forces due to the bending momants snd the

now to member i-d, all of the torsional shear has been
transmitted to the tieb, so that the force in i-g is only
that due to bending.

Figure 14 is a reproduction of the results of least-
work calculations reported in reference 9. Unfor-
tunately, the reference does not state whether the values
used in these calculations for tube areas, wire areas,
moduli of elasticity, etc., were actual or nominal. In
the calculations made by the writer, nominal sizes and
standard values were used; it will be seenthat theresults
given in the preceding psra.gaph and in columns S, 13,
and 16 of table D agree with the values given in fiagme
14 within the limiti of the accuraoy of calculation.

The same wing frame was calculated with jff28
wire in place of the 10-32 wires. The aggeement with
the lesst-work calculations was not so good ~ in the
previous case, but the differences were only about 5
percent when the maximum wire area permissibleunder
the materials spetications was used in the calculation.

P

.Lkmerchord_ 1Fmnf spar b . . v
-g-

J Spar flonges

d
I& x 0.049

—
Front

Rear

P

+

—36— —36—
~

I

forces due to the toreional shear. Take, ss an exam-
ple, the forces in the second bay from the tip of the
front spar. Member e-d (fig. 13) tran.snu“ts the full
shear (i.e., compression due to the tension of the drag
wire) to the amount of ~JJ=4.91X36= 177 pounds.

1,632
The force due to the bending moment is ~= 181

pounds; therefore the force in member e-d is 358
pounds.

Passing from member A to member g-d, the shear
force in the flange is rdduced by the amount carried
over into the web members at the joint between e-d
and g-d; this reduction equals 4.91X18=88 pounds,
leaving 89 pounds to be taken care of in the flange; the

force due to bending in member g-d is ~=129

pounds, mdcing the total forii 218 poknds. Passing

Bulkhead flanges
I x 0.035

Bulkhead webs
~ x 0.035

wires:
lo-a?
~ -28)
(~,-24)

W dimensions
in inches

The tests on the wing frame were made with three
different sizes of wire: 10-32, %–28, and X,–24 and
each with three diiferent kinds of support: 4-pin sup-
port representing the support the frame would have in
an actual airplane, 3-pin support at the wing root, and
2-pin suppoit (one p-k in front spar, one ~in k“ rear
SPIW). ‘i%e latter rnethQds.of su>port e&@ata .&e
influence of the’ b&ling stif$nessof @p spqrs, so that
the @sts evqluate the properties of the @ne as a pure
torsion ~ox.

The calc~ation of tip ben@ng and pure torsional
stiflnessesof the frame is giv~n in detail in the preceding
calculation for case I,. i.e., 10-32 tie. The pure
torsional stiilnesses -were calculated similarly for
cases II and QIj. i,e.j ~r28 apd jf~24 wire. With
thwe valqes, the tip deflections. were. calculated by
formula (8) for a 2-pin support (puye torsion box) and
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n 4-pin support (wing tie). For the case of a 4-pin
support, the deflections were also calculated by inte-
grating the M/EI ewes which checked the deflections
obtained by the formula within 5 percent; the ~P-
tion of inilnitely many ribs underlying the formula can
therefore be used quite satisfactorily for as few as four
ribs.

The comparison of test remdts and cdcuhtions
showed that dl computed deflections were much too
large. The ratio of the calculated to the observed
values was almost 2 (within less than 5 percent) in

COMMITTEE FOR AERONAUTICS

assumption of slack counterwima gave deflections 48
percent too high, wheress the assumption of taut
counterwires gave deflections 26 percent too low for n
2-pin support.

This discrepancy may be explained as follows: If it
is assumed that all counterwirea were just about to go
out of action at the highest test load used, the initial
tensions must have been 48 percent, 36 percent, and
23 percent of the rated strength in caseaI, II, and III,
respectively. Obviously, the initial tension required
for case I is rather high; it seems reasonable to assume

100 10-32 wires

+ 3s.9 +,997 + 1.3’2 +!19 b -25 +9 - /s7

o

. -729
663

Fmnf spur d }‘
100

+ = Teneion – = Compre.sab

E D c B Fronf A—

Plan

Bulkheads

FIGUREM.-Stmstied r%r ~ TV@ frame (refmanm 9). Four-pinsnpp~ l@Mb.down on tip of front span llWJb.UP on tlp of w sw.r.

cases II and III for the 2-pin support. This relation-
ship points to the possibility that the counkwires
had sufficient initial tension to remain active through-
out the test, in which we the pure torsional stifhmss
BOwould be nearly doubled. The calculations were
therefore repeated, using twice the original values of
BO. It was found that in cases JI and III the cal-
culated deflections for a 2-pin support were about 3
percent high and those for a 4-pin support about 9
percent low, errorswhich are well within the magnitude
of errors possible eithw in calculation or in test. In
case I the condition seemed to be in between: The

that the actual initial tension was considerably less, so
that the most highly stressed counterwires probably
went out of action and reduced the pure torsional
stiffness of the frame new the tip.

The txst report makes no definite statements regtmd-
ing the condition of the counterwirea beyond recom-
mending that in future tnsta they be omitted alto-
gether. This recommendation probably indicates that
their presence was felt to intioduce uncertainties, to
say the least. In vie-iv of this and other dficulties,
such as questions on jig deflection, actual areas, and
moduli of elasticity, the writer has made no more
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concentrated effort to explain the diilerenccs between
theory and experiment. The following conclusions
may be drwwn:

1. If an accurate check of the theory is desired, the
initial tension of the wires must be known accurately.
The ensiest way to achieve this end is to remove the
countertiea for test purposes.

2. In view of the fact that the tip deflection com-
puted under the assumption of independent spars is
about 4 times that observed for case I and about 10
times that for case III, the proposed method of calcula-
tion constitutes a vast improvement. The large per-
centage discrepancies left in some cases between theory
and experiment can be explained by the uncertainty
about the test conditions.
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3, The proposed method of calculation gives results
equivalent to standard leasbwork calculations -ivbich
treat the wing frame as a pin-jointed space framework
while the labor is reduced to a point where the com-
putations may be made as a routine design procedure.
It may not be amiss to point out that design calcula-
tions-whether for stithcss or for strength-should
be based on the assumption of all countetics being
slack, since this condition will ordinarily obtain under
design loads.

Figure 15 shows the results of the calculations for
the three tests with 10–32, Jfi28, and X&24 wires.

EXAMPLRS OF STRESSED-SKIN WINGS

As an example of stressed-skin wings, the bending
moments and torsional deflections in an Atlantic
G2A Transport wing were calculated. The calcula-
tions for the relief moments are exactly analogous to

those given in detail for the wire-braced wing frame,
once the torsional stiiflhesmshave been calculated for
each bay by formula (T–3) (appendix A).

The dimensions and properties of the W& frame
and the test results are given in references 10 and 11;
for the shear modulus, G=135,000 pounds per square
inch was used (appendix B). The results of the cal-
culations are shown in figures 16 and 17. The agree-
ment between calculated and experimental twist is
excellent.
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The only test on a metal wing with parallel spars
that has come to the attention of the writer is de-
scribed in reference 12. The information given in the
report is meager and contains some obvious errors.
The conclusion may, however, be drawn that the
calculated stiffnessvalue is conservative.

~G FRAMES~TH NONPARALLELSPARS
FFtlEDRIO13S-VON_M~ EQUATIONSFORNONPARAI.JXL SPARS

Friedricbs and von K6rm6n indicate in their paper
(reference 2) the possibility of deriving equations for
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wkqg frames with nonparallel spars. The writer has
made this derivation for the case of two spars having
the same inclination with the tranmnme axis, but has
found that the coefficients corresponding to p, g, r, s;
and t (FK-13), contain so many terms that they are
of no practical use. This unfortunate fact arises from
two circumstances: First, both the bending moments
and the torsional moments always have two compo-
nents, since the coordinate system is not rectangular;
second, crow products of bending stiilnesses and tor-
sional stiEnes9e9arise, in a manner similar to the case
of a beam with bending moments not in a principal
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plane, where productmf-inertia terms arise in addition
to moment-of-inertia terms. h view of the large
rn~~e of proportions possible, it did not seem possible
to derive any generally useful approximations of these
equations for nonparallel spars, and it was necessary
to resort to other methods of analysis.

APPEO~hlATEBlmHODSOFCALCULATIONS

Good approximations for wings with small inclina-
tion of the spars may be obtained by assuming a con-
stant spar spacing equal to the average spacing and
using the Friedrichs-von K6rm6n equations. The
actual spar spacing at any station is used, however,
to compute the torsional stifbwss at that station if
the spar webs form two sides of the torsion box. This
method was used by Friedrichs and von K6rm6n
(reference 2) for calculating a durahnnin test wing
with a taper between spars of 1:2. The calculated
angle of twist checks within about 5 percent, although
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there is a discrepancy in the total deflections that
indicates bending of the wing in addition to the twist-
ing, in spite of the fact that the load applied was pre-
sumably a pure torque.

Another means of analyzing wing frames with non-
parallel spars would be to ,use conventional methods,
but to reduce the labor of computation by assuming
that only two ribs are working; namely, the rib at the
tip and a rib at one-third of the semispan from the tip,
as previously explained.

In order to .@n some idea of the relative results
obtained with these diilerent methods, they were
applied to the wing frame described in reference 13.
This fkarne,designated “XHB-3”, had a semispan of
262 inches, and was sharply tapered in plan form and
thickness. The spars were truss-type, of steel tubing,
and the drqg bracing consisted of wires that decreased
in size from root to tip.

l?igge 18 shows the relief moments for a load factor
of 0.5 and the load distribution as used in the tests cal-
culated by (1) the Friedrichs-von Khrmhn formulas,

assuming constant spar spacing; (2) conventional
methods, assuming all ribs working; and (3) conven-
tional methods, asuming ribs O and 2 acting. Using
method (2) as a basis of comparison, it will be seen
that in this case method (3) gives a very close appro.si-
mation for the bendiqg moments in the spare. How-
ever, method (3) gives an incomplete picture of the
sheam in the spars and of the forces in the ribs; fur-
thermore, it seems reasonable to assume on general
principles that the probability of obtaining good
approximations will usually be somewhat higher when
met@od (1) is used than when method (3) is used.
Metiod (1) is conservative compared with method (2)
as shown on figure 18, and some comparative calcula-
tions on wings with constan&section spars indicate
that it is always conservative in the practical range of
stiifhess ratios.

Figure 19 shows the comparison of external and in-
ternal bending moments for the XEB-3 wing, based
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on the Friedrichs-von K6rmfm results. By an inte-
gration of the resulting MIEI curve, the tip deflections
were calculated for the unit torque acting on the wing,
and the results used in combination with the calcu-
lated deflections for unit bending load to obtain the
bending deflections at the tip in low and in high
incidence.

In order to make a comparison with the experimen-
tal results it was necessary to consider the influence of
the center section, since in these teds the fittings hold-
ing the spars at the root were not held by a rigid struc-
ture but were attached to the spare of a quite flexiblo
center section corresponding to the actual condition in
the airplane. It is obvious that the flexibility of the
center-section sparswill increasethe bending deflections
of the wing spars and, consequently, the amount of
relief action. Some simple calculations for the case of
only a tip rib acting showed that the relief moment at
the root may be increased by about 33 percent for a
wing with a torsional stifhws corresponding to that
of the =–3 wing and a center section of propor-
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tional length. The advantage over the wing built @
at the root decreases quite rapidly, however, with
increase of torsional stiflness and decrease of length of
center section, so that it should be neglected entirely
for ordinary design calculations.

The foregoing remarks should not be construed to
mean that a flexible center section is desirable. The
criterion for a good design is stiffness, not a large relief
coefficient.

In the XHB-3 tests at high and low incidence, the
direct bending deflections were always considerably
larger than the bending deflections due to torque.
Consequently, it was assumed as a fit approximation
that the relief action was not affected by the flexibility
of the center section; however, the calculated deflec-
tions were compared not with the directly measured
deflections but with the deflections measured horn the
tangent to the elastic curves of the spars at the hinge
fittings. The direction of this tangent was calculated
by assuming that the elastic curve was a circular arc
over the center section, and the radius was calculated

I I I I I I
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from the known deflections at the centerline and at’ the
hinge fittings. This method gave very consistent
results for all tests and was therefore considered as
satisfactory. The comparison between the remdts of
this first approximation and the experimental results
showed that the calculated deflections were 8 percent
too high for both high and low incidence and both
front and rear spare. In the second approxknation—
introducing a correction factor into the relieving eflect
—the dii7erencesfor low incidence were reduced to 7
percent and 5 percent. The interaction being entirely
neglected, the differences were increased to 10 pertint
low and 21 percent high for front and rear spara,
respectively.

EXAMPLE9 OF STRHSWSRIN WING9
WITH NONPARALLEL SPARS

An instinctive example of high torsion~ stiiTriesa
is given by the Drigga-Dart wing (reference 14) which
is a high-aspect-ratio wing for a very small single-

seater airplane. It is covered with plywood of the
same thickncas as that used in the outboard half of the
Atlantic C-2A Transport wing and has therefore a
very high torsional stiffness and a very great amount
of relief action. Figure 20 shows that the torque is
carried almost entirely by the torsion tube, except
near the root, and that the bending moment left in the
spars is negligible except for a small amount at the
root. Figure 21 shows the experimental and the
calculated twist. The calculated twist was too large,
which may be due partly to a higher shear modulus,
partly to excess thickness of the plywood, and partly
to neglecting the spara in the calculation of the pure
torsional stiifnew. Since the materials specifications
permit 20 percent excess thickness, the calculated
values of the twist were reduced by 20 percent and the
resulting curve shows good agreement.
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A very interesting test on a plywood-vered king
is descriied in reference 15. The wing was tested
under,a distributed torque corresponding to the actual
torque in a terminal-valocity dive. The bending
moments along the span were measured at 17 stations
by means of strain gages, and the torque Tz carried
by the spars was computed horn these moments. Sub-
tracting T~ frcm the known external torque T. gave
the torque TI taken up by the torsion tube. Figure
22 shows the variation of T,, Tl, and Ta along the span,
as well as. the expyimentally obtained bending mo-.
ments M and the bending moments ill, wtich would
exist. without interaction. .

It will be noted that for prac~cal purposes the en-
tire torque is carried by the torsion tube (skin) in t~e
outer two-thirds of the semispm; farther inboard, the
percentage of the total torque carried by the skin de-
creases rapidly. The curve of bewling moments kf
is qualitatively smilar to that calculated for the At-
lantic C-2A wing shown in iigure 17. Both curves
show that, in the outboard portion of the wing, the
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sign of the bending moment is opposite to that which
would exist if the spars camied all the torque by bend-
ing. Quantitatively, however, the experimental bend-
ing-moment curve of figure 22 shows a much f~ter rise
toward the root than does the calculated curve of
figure 17. Unfortunately, it was not possible to cahm-
late the relief moments because the bending properties
of the spars were not given.

CONCLUDINGREMARlR3

A general idea of the theoretical magnitude of the
relief action may be obtained from figure 23. This is
a plot of the relief coefficient CE= m/Me at the root

against the ‘~interaction coefficient” c,+. ; for

wing frames with constam%ection spars. The relief
coefficients were computed for three diiTerenttypes of
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loading: namely, load concentrated at tip, load uni-
fern.lly distributed along the span, and load tapered in
the ratio of 2:1. Each type of loading was calculated
for two types of interconnection between spars, a tip
rib only, and an infinite number of riis. It will be
seen that the curves for the most important cases—
uniform and tapered loads on winm with many riis-
Iie very closely together, and. that the relief action
increases only very slowly for Cl>30, which is the
stressed-skinrange.

The calculated relief coefficients for the Driggs-
Dart and the C-2A wings are also plotted on the figure,
using the average value of BJA.O along the span for
computing the interaction coefficient. The points
fall fairly olose to the corresponding curves, although
in both of these wings the bending stifhss as well w
the torsional stiibss decreases rapidly as the tip is
approached sad the ratio BO/& varies irregularly

along the span. This result suggests that for stressed-
&in wings a good estimate of the theoretical relief
action might be obtained without any calouh-dion
beyond that of the torsional and bending stifhesses
for n few stations.

W~ that owe their pure torsional stiffness to
double drag-wire bracing or to the individual torsional
stiflnesses of the spars, have, as a rule, Ui<20. In
this range, reliable estimates of interaction on tmpered
W@S mot be obtained from figure 23, as the point
for the XHB-3 frame indicates.

When the twist or, more important, the stresses

under high loads are being calculated an extremely
important fact must be borne in mind. The ordinary
formulas for calculating bending and torsional stiil-
nesses only yield the so-called “initial stiffness”,
valid for small loads. Compact sections retain their
initial stillness until the stresses approach the limit

120 1 1 I I 1 I 1 I
C,x,Concenfmiedload offib

I I I I I
U,Uniform!oa~

T,+.Tr pezoidalload 2:1 ~

/m
I J i

I 1 —
v! __ ;C

— -,,-

“XHB-3
20 I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I ! I /
I

o 20 40 60 80 100 120 140 /60
Cf=zke

AO ha

FIUUEU23.-W weftkient forwingswithat9tan*tlon srkara

of proportionality, but the thin-walled sections now
in common use suffer from an increasing loss of
efficiency as the load increases, owing to the fact that
parts of the structure buckle and no longer carry their
share of the load. Since the rate of loss of efficiency
with load will, in general, not be the same for the
torsional stiflness as for the bending stiffness, the ratio
BO/& will ohange with increase of load and, conse-
quently, the amount of relief mtion ~ change.

In 2-spar wings covered with flat sheet the spars
will quite often be of such a shape that they lose their
bending stiilnew at a slow rate, but the thin-walled
torsion tube formed by the wing covering will lose its
torsional stiffmws rapidly, with a resulting deorease
of interaction effect. The @t results given in figure
22 may be cited as an example. The experimental
value of the relief coefficient was somewhat less than
00 percent; it should be .atle~t 70 percent, ~~g
CI=30, -whichis about the minimum probable value.

H the stiffness of a strnctuial member is a funotion
of the load applied, the methods of analysis developed
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in this paper, are, strictly speaking, inapplicable.
However, if the loaddeformation diagram of the
member is know% a substitute member of constant
stiflneasmaybe defined by the condition that both the
original and the substitute member must store the
some amount of strain energy -when a load is applied
which increases from zero to the design load. A
simple empirical method for estimating the torsional
stifFnessof thin shells under large torque loads has
been published (reference 17).

Finally, the influence of torsionally stiff ribs might
be touched upon. Throughout the present paper it
w-asassumed that the ribs have no torsional stiffness.
Under this assumption, a wing frame with ccnstant-
section spars connected by a tip rib rigid in bending
will have a maximum relief coefficient of 0.75 when
subjetted to a uniformly distributed torque; the spar
corresponds then to a cantilever beam supported at
the free end. If the tip rib is now made rigid also in
torsion, the relief coefficient increases to 0.83, the spar
acting as a beam built in on both ends. The additional

relief amounts to 0.08, or 11 percent of the original
relief. Actually, only about half of this amount can
be realized because the torsional stiflrmssof the rib is
finite; the assumption of in.iinitestitlness in torsion is
not generaly permissible, unlike the case of bending
stiflnas%

With torsiomdly SW spars, then, the additional
relief due to ribs being stiil in torsion besides being
sti.flin bending is too small to justify the complication
of the analysis. With spars weak in torsion, however,
the relief due to ribs stifEin bending is small and the
relief due to ribs sti.tl.in torsion becomes relatively
more importsmt. The effect of torsionally stiff ribs
on the twist of the wing frame is discussed in refer-
ence 18 for the cwe of spars with constant section.

LANGLEY MEMORLAL AERONAUTICAL LABORATORY,

NATIONAL ADVISORY Co mmmm FoR AER0NAUTIC8,

LANGLEY l’IELD, VA., April 10, 1934.
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APPENDIX A 4

FORMULAS FOR TORSIONAL STIFFNESS

For a rod of uniform cross section, built in at one
end and. twisted by a concentrated torque at the free
end, the fundamental equation of torsion is

Where .9,angle of twist at free end, radians.
T, torque.
L, length.
G, modulus of shear.
J, the torsion constant, a factor corresponding

to the moment of inertia in the theory of
bending. Analogous to the bending stifl-
ness EI, the product GJ is termed the
“torsional stiffness.” Formulas for cal-
culating the torsion’ constant for various
sect

T
b

1
I I
+C-+

(a)

ions are given below

x

t’

7

1
D

c, b’

L

r. I

a “>

~.~/ j

.— -—”

4’45s

~RCULAR TUBE

J=IP

where In is the polar moment of inertia.

REmANGLE
@lg.%)

(c)

J=~b@-O.630j+0.052(~~]

I-BEAM

(Fig. 24b)

J=2Ji-FJ,+2Ca

J,=J of web=$~a (see reference 16).

D, diwnetir of circle inscribed at juncture.
a, constant from reference 16. The value of

a varies between O and 0.3 for usual pro-
portions. If the radius of the fillet is zero,
a varies from O for ti=O to a=O.16 for
~=c~.

THIN-WALL~TUBE

(FYg. 240)

Jo=%

J (T-3)
T

where A, area enclosed by median line.
d8, differential ehmmnt of perimeter.
t,wall thickness of ds.

FmlJEll 24.

(T-1)

(T-2)

where J,=Jof flange=~xblc,a(l –0.630 ~+0.052~~~)

64

(e)

The integral is taken around the whole perimeter.
The sheaiing strefs at any point is

j$’~

The shearing force per inch of perimeter is

m

j,t+

WOODEN BOX BEAM

(Fl& 24d)

The torsional sti.fhess is the sum of the torsional
stiffness of the beam considered as a thin-walled tube
(using the median line as perimeter) and of the individ-
ual stitlne- of the flanges. (See reference 15.)
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where (2P,
QF,

(7J= (&&-I-2QJ, (T4)

shearing modulus of ply-wood.
shearing modulus of solid wood in flange.

J,l J of flfige (by formula (T-l)). -
When computing J,, the thiclmesst,must be replaced

by an effective thickness, which is expressed by

l,’=tpx$

ME1’ALBOX BEAM

In this we formula (T+) is used, but if the web has
lightening holes, a reduced effective thickueas must be
used. If the holes nre cut so that the remaining web
forms a truss, the calculation is similar to that given for
wire drag bracing in the main text. If the lightening
holes are of any other shape, tests must be made, since
no rules are at present available. The reduction in
thickness is not proportional ta the reduction in web
area, but is much higher. Reducing the web area 50
percent by means of round lightening holes reduced the
effective thickness to 7 percent of the actual value in
one case.

WINGSE~ON WITHSTR&EDSXIN
(Jug. 24,)

(7J= Qd,+_ (@J)F+_ (~fiR

where (70,shearing modulus of cover material.
JO, J of whole wing section.

(QJ),, torsional stitlinessof front spar.
((X7),, torsional stiffness of rear spar.

The two spar sti.finessesare usually very small com-
pared with QJO. For the computation of JOitisuseful
to remember that

A=kXhXc

where k usually lies between 0.65 and 0.71.’
The formula given for ffJ neglects the fact that the

spars act rho ns iuner walls of the torsion tube. This
effect cm be taken into account by deriving a more
accurate fornda with the help of the membrane
analogy or the hydrodynamic analogy for torsion.
The result by the simple formula given above is
usually not more than 5 percent in error and is
conservative.

NUMERICAL EXAMPLRS OF THREE TYPES OF BEAMS

@&. m

MrLtmird:Spruce
Webs of box beam: 2-ply, 45° spruce

#Z7=l.3X100 lb./sq. in.
Q=84,000 lb.isq. in. for solid spruce
Q=420,000 lb.lsq. in. for 45° plywood

I-bmm ___________ 7&mm K!& m m.o
solid beam -------- 7&3cqclm
BOX ken---------- n,aw,m Z?w?l

15s o
24.7

CALCULATION OF B

Rectsqy.dsr spar (formula (T-l))

( )J=+ X1.323’X8 1–0.63 ~ =5.54 in>

B= @J=465,000 lb.in?

i

TTT8= 6“ F

-q

L2”–4 M.=5’” 1+,-+1 r

FIGURE2E.

Routed spar (formula (T-2))

‘=2xlx2x1a(1-063xi)+~x6
+2X0.035X1.064=1.251 in}

B= QJ=105,ooo lb.in?

Box spar (formula (T”~))
.

A=7X2.125=14.1375 sq.in.

For calculating JO,the effective thiclmess of the flanges
is

84’000=0.200“=1 %0,000
therefore

4X14.875 f
JO= 14 h 12 =6.65 in}

—.
0.125 +0.~00

(2J1=2X; X2X13 1–0.63X~)=0.913 in?

Q~o=420,000X6.65 =2,800,000
2QJp=84,000X0.913= 76,000

QJ= Q=Jo+-2QdF=2j876,000 ~bfi~



APPENDIX B

MODULI OF ELASTICITY

EOfer-
ence
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The b~ is evidently not qafte the same m American frch

As a general rule, the Forest Products Laboratory
E, E=

recommences 45° pl~ood: (3=3==5. Parallel-per-

Ponticdm pl~ood. ~_E~_ EO .
16 14.5 Value9 resulting

from the application of this rule are low compared
with the values given in tho table. The tabulated
values were used in the present paper as representing
the most probable values for the purpose of checking
tests by theory.

LIST OF IMPORTANTSYMBOLS

E, modulus of elasticiW.
~, modulus of shmr.
I, moment of inertia.
J, torsion constant.
A=EI, bending stiflness of a member.
1?= Qt7,totional stiflnem of n member.
A, see equation (2) of text.
Bo, see equation (5) of text.
b, distance between spars.
Z, length of spar.

M, tl.nal bending moment in spar.
T,, part of total torque carried by torsional shearing

stressesin torsion tube.
TZ,part of total torque carried by bending of spars.
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